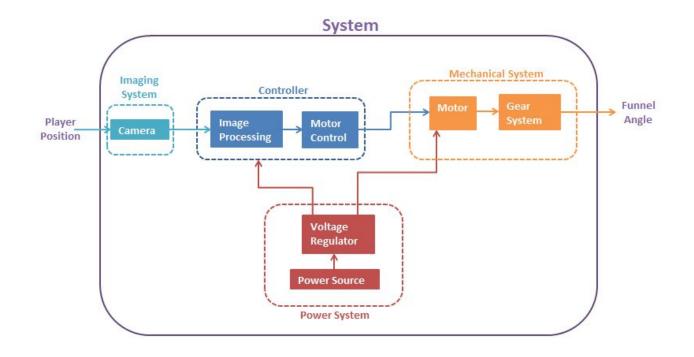


Team Members

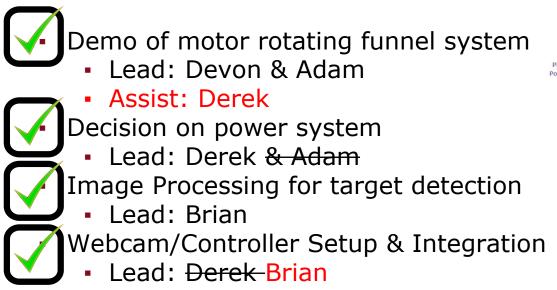
2

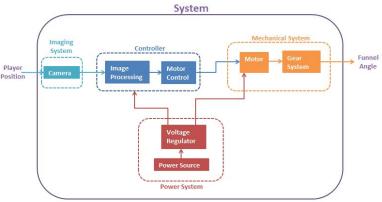
Project Overview

- Practicing basketball alone is inefficient without someone to return the ball to you
- Even if you make all of your shots, still have to retrieve ball
- Inefficient use of practice time
 - Energy/time lost chasing rebounds
- Current return systems require manual adjustment


General Requirements

- Track player at distance of 5-25 feet from rim
- Accurately track lateral movement of player in real-time
- Operational for >= 1 hour at a time
- System can withstand direct hit from basketball
- System weight does not pull rim downwards
- Easy setup/teardown of electronic part of system




Block Diagram

MDR Deliverables

Motor Selection Process

- RPM and Torque were our constraints
 - Compiled knowns and unknowns into Excel
- RPM
 - Range set to 45 deg/s 55 deg/s
- Torque
 - Measured force using pressure gauge from MIE department
 - Used this to determine max load we could handle
 - Translated this to torque

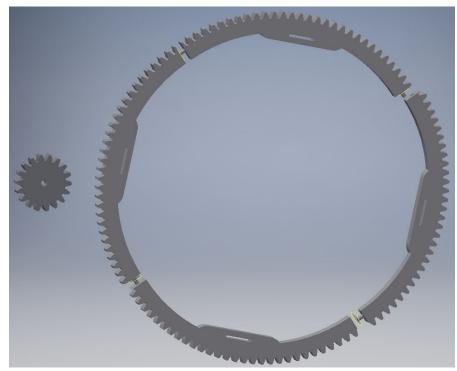
Gear Properties	Diameter (in)		Radius (in)		h	Size Relationship	Estimated Force (lbs)	Speed (RPM)	Estimated Torque (lbs-in)	Estimated Torque (oz-in)
Gear 1		13	3	6.5	130	6.5	1:	2 10	7	8 1248
Gear 2 (pinion)		2	2	1	20	0.153846154	1.84615384	6 65	1	2 192
	ve minimum of 18 t									
Speed a * Teeth	a = Speed_b * Tee	eth b								·
	ed_a) * (Teeth_a)/(
	T_a/T_b) = (Speed_									
Max Movement	Supported = 50 dep	a/s								
	eg arc to be covered									
		d up to 10RPM = 60 d	deg/s							
Estimated Max L										
		ut was estimating us	sing two hands							
Estimated Force	with 5 lbs load = 4	bs								
Estimated Force	with 15 lbs load = 1	12lbs								
			-							
Torque = -(stal	I torgue/max rpm) * rpm required +	stall torque			Stall Torque (oz-in)	Speed w/out Load (RPM)	Speed w/load	Torque w/load	Min Stall Torque Needed
				Mot	or A	200		o 4		
or				Mot	or B	680.5	16	5 118.4459956	19	2 316.8
				Mot	or C	958.2	11:	94.35566688	19	2 427.4716981
Speed = (stall torque - Torque required) * (max rpm/stall torque)			Mot	or D	1347.1	8	4 72.02761488	19	2 848.8421053	
				Mot	or E	1874.8	6	53.85534457	19	2 -2304
Motor A	http://www.ach	atchon com/on/l-	lu-12v-100-1-gear-motor-end	odor html						
Motor B			5_rpm_hd_precision_planeta		CLCur	n Ms				
Motor C			5_rpm_nd_precision_planeta 8_rpm_hd_precision_planeta							
Motor D	1 6.6		<pre>s_rpm_nd_precision_planeta</pre>							
Motor E	nttps://www.sei	vocity.com/ntml/60	<pre>_rpm_hd_precision_planetar</pre>	yntmi#.Vj	DHAA	TIIVIS				

Motor Selection

60 RPM HD Precision Planetary Gear Motor

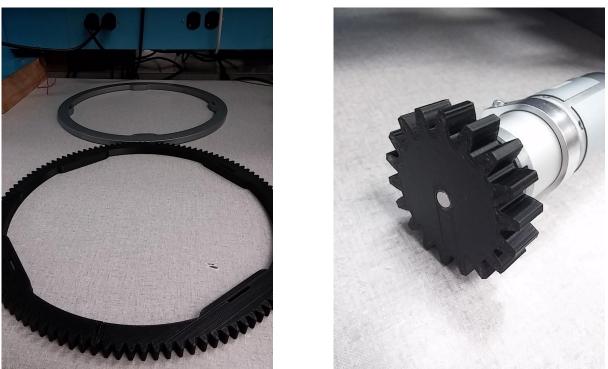
Operating Specifications:

Operating Voltage Range: 6~12VDC Rated Voltage: 12VDC Rated Load: 15 kgf-cm (208.3 oz-in) Operating Temperature: -10 ~ +60°C Max No-Load Current: 0.53A No-Load Speed: 60 RPM Min. Stall Torque: 135 kgf-cm (1874.8 oz-in) Max, Stall Current: 20A @ 12VDC Dielectric Strength: 250 VAC Motor Brush Type: Graphite Output Power at Max. Efficiency: 11W Gear Type: Planetary Gear Ratio: 139:1 Bearing Type: Dual Ball Bearing Shaft size: 6mm (0.236") Net Weight: 360g (12.70oz)



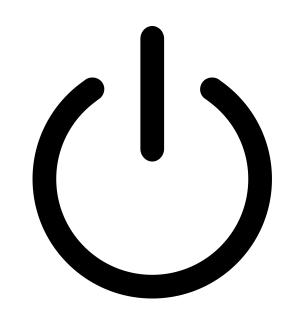
UMassAmherst Mechanical System

- Achieve rotation via motor and gear system
- Used Autodesk Inventor to design gears
- 3D printed gears and tested result



Gear Design

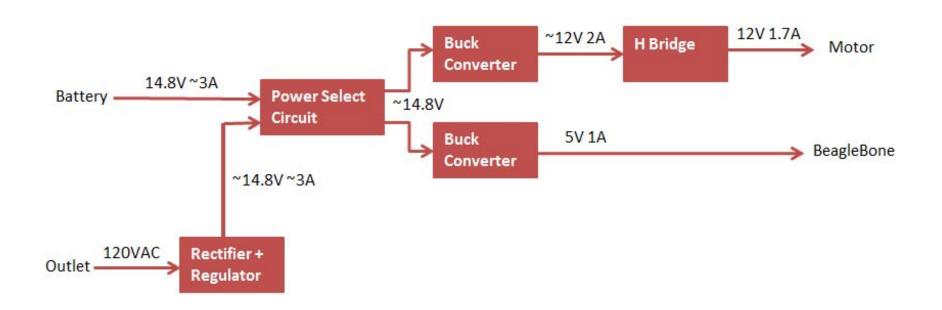
Gear Results


Mounting

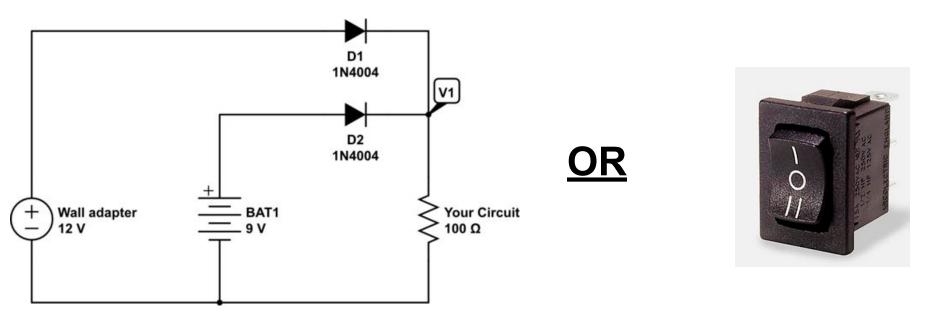
Mechanical Demo

Power System Requirements

- Supply battery power for >= 1 hour at a time
 - Limited by motor size (12V, max 1.7A)
- Lightweight (cannot weigh rim down)
- Power both controller (5V) and motor (12V)
- Switch between battery and outlet power
 - Considered Solar Power


UMassAmherst Battery Selection

- Total Current Draw Estimate: 2.7A
- Requirements
 - Lightweight < 1lb.


- Tradeoff!
- Power for >= 1 hour
- LIPO battery for high energy density
 - 11.1V (3 cell) vs. 14.8V (4 cell)
 - Requires special charger
- Picture: 5000mAh, 15.2oz

Power System Implementation

Power Select Circuit

Design from electronics stack exchange user CarpetPython (http://electronics.stackexchange.com/questions/130986/automatically-switching-from-9vbattery-to-dc-wall-adapter-on-insertion)

Image Processing-Setup

- Logitech c270 720p HD Webcam
- Beaglebone Black Microcontroller with Debian Linux Operating System
- C++ Image Processing Code written and run from Cloud9 IDE using Beaglebone Bash Command Line

Image Processing-Code

- Uses OpenCV and V4L2 libraries to access camera and process images
- Uses 24-bit BGR pixel format in OpenCV Mat
- Determines target color by analyzing image of centered target initially
- Compares pixel values to target color to find target pixel coordinates
- Determines whether target is left, right, or centered

Color Detection Demo

Image Processing-Moving Forward

- Timing
 - current processing takes 20-40 ms per frame
 - well under 200ms required time
 - could increase with code complexity
- Illumination
 - illumination makes it hard to detect some obscure colors at different distances/lighting
 - distinct colors are seemingly unaffected by illumination
 - Using distinct colors in patterns on jersey should minimize effects of illumination

Gantt Chart

	A	⊁ н	1	J	к	L	М	N	0	P	Q	R	S	т	U	V	W	x
1		7-Dec	14-Dec	Winter Break	18-Jan	25-Jan	1-Feb	8-Feb	15-Feb	22-Feb	Feb-29	7-Mar	14-Mar	21-Mar	28-Mar	4-Apr	11-Apr	18-Apr
2											CDR?	CDR?				FDR	FDR	Demo
3	Image Processing System																	
4	Stationary Target Detection																	
5	uController/Webcam Setup																	
6	Code Optimization/Refinement																	
8	Mechanical System		-							_								
9	Mounting/Packaging	<u></u>																
10	Power System													_	-			
11	Implementation Plan/Schematic	·												ji i				
12 13	Breadboard Design									1								
14	PCB Design		-												-		_	
15	System Integration & Test																	
16	Controller/Motor																	2
17	Power																	1
18	Final System Test																	2

UMassAmherst CDR Deliverables

- Camera/BBB/Motor Integration
 - Lead: Brian & Devon
- Completed power system breadboard design
 - Lead: Derek & Adam
- Mounting considerations for hardware
 - Lead: Adam & Devon

Cost Estimate

- SKLZ Shoot Around \$30
- Beaglebone Black \$45 \$55
- Webcam \$20 \$30 \$26
- Motor \$40 \$100 \$40
- Gears/Mounting HW \$20-\$40
- Battery/Charger \$70-\$100
- Power supply \$30
- Worst-Case Estimated Total: \$375 \$321

Questions?

